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By comparing theoretical modeling, simulations, and experiments, we show that there exists a
swimming regime at low Reynolds numbers solely driven by the inertia of the swimmer itself. This is
demonstrated by considering a dumbbell with an asymmetry in coasting time in its two spheres. Despite
deforming in a reciprocal fashion, the dumbbell swims by generating a nonreciprocal Stokesian flow, which
arises from the asymmetry in coasting times. This asymmetry acts as a second degree of freedom, which
allows the scallop theorem to be fulfilled at the mesoscopic scale.
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The time reversibility and linearity of the Stokes equa-
tion require microswimmers to deform in a nonreciprocal
fashion in order to swim, a rule known as the “scallop
theorem” [1]. Many strategies in the Stokesian regime,
based on the periodic deformation of at least two degrees of
freedom for successful propulsion, have been intensively
investigated in the past decades [2–10]. This research has
provided a fundamental understanding of the underlying
dynamics as reflected by the emergence of several tech-
nological applications [11–16].
A natural way to break down the scallop theorem is by

introducing inertia. This is commonly achieved by the
inertial dynamics of the fluid [17,18], here characterized
by the Reynolds number Ref ¼ ρfLŪ=η (ρf and η being the
fluid density and viscosity, L the swimmer body length, and
Ū the average swimming speed). For example, the inclusion
of inertia in the dynamics can be achieved by using steady
streaming [19–21], vortex generation [22], or turbulent
flows [23]. The possibilities for the exploitation of the
swimmer’s own inertia were first suggested a decade ago by
Gonzalez-Rodriguez and Lauga [24], opening the debate on
and additional investigations of swimming in this regime
[20,21,25]. Interestingly, recent experiments and simula-
tions have shown that mesoscopic structures, i.e., 100 μm to
1 cm in scale, display coasting effects [26–28] while
generating fluid flows with a time-reversible behavior
[29,30]. Those observations point to the possible existence
of a swimming regime at low Ref where the inertia of the so-
called mesoswimmer dominates and generates the motion, a
hypothesis that warrants further investigation.
A minimal mesoswimmer that can verify this hypothesis

is an asymmetric dumbbell consisting of two different

interacting beads driven in a force-free manner (Fig. 1).
The Reynolds number Res of such a swimmer is set by its
bead density ρs, its bead size a, and its beating frequency ω
such that Res ¼ ρsa2ω=η. This design possesses only one
internal degree of freedom, which leads to a reciprocal
deformation, and therefore it cannot swim without the help
of inertia [19,20,24]. Assuming that the Reynolds number
of the fluid is Ref ≪ 1 and of the swimmer Res ∼ 1, the
flow should be dominated by the fluid viscosity while the
propulsion mechanism should be related to the coasting
time of the swimmer, which we define as τ ¼ m=ð6πηaÞ,
with m being the bead mass. In this case, the swimmer
should achieve propulsion and fulfil the requirement of the
scallop theorem by relying on an asymmetry in coasting
times of the constitutive beads.
To elaborate on this idea, we first build an analytic theory

that relates the swimming velocity and coasting times. We
successfully compare the model to experiments and lattice
Boltzmann simulations in which no assumptions are
imposed, thereby verifying the hypothesis that there is a
swimming regime in which the inertial effects in the
swimming dynamics can be separated and the swimmer
coasting time harnessed for propulsion.
Our modeling efforts revolve around a dumbbell

[Fig. 1(a)] that consists of two submerged beads of mass
mi and radii ai. The beads are linked by a linear spring
with stiffness k and natural length L, capturing, within
the harmonic approximation G⃗i;j ¼ −kðjx⃗i − x⃗jj − LÞ, pos-
sible direct interactions between beads. The external
forcing F⃗i is a sinusoidal force applied to each bead
with the same intensity F and frequency ω in opposite
directions to satisfy the force-free condition. The

PHYSICAL REVIEW LETTERS 126, 224501 (2021)

0031-9007=21=126(22)=224501(6) 224501-1 © 2021 American Physical Society

https://orcid.org/0000-0001-9412-372X
https://orcid.org/0000-0002-4178-5997
https://orcid.org/0000-0001-7302-0019
https://orcid.org/0000-0001-6339-4818
https://orcid.org/0000-0002-9200-6623
https://orcid.org/0000-0002-1824-2011
https://orcid.org/0000-0002-0835-0086
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.126.224501&domain=pdf&date_stamp=2021-06-02
https://doi.org/10.1103/PhysRevLett.126.224501
https://doi.org/10.1103/PhysRevLett.126.224501
https://doi.org/10.1103/PhysRevLett.126.224501
https://doi.org/10.1103/PhysRevLett.126.224501


swimming dynamics of this object is studied using the
following equation of motion:

∂x
∂t ¼ M̂ðxÞ

�
FðtÞ þ GðxÞ − m̂

∂2x
∂t2

�
; ð1Þ

where bold symbols account for concatenated vectors, e.g.,
x ¼ ðx⃗1; x⃗2Þ. In this equation, we assume low Ref dynamics
by using the mobility matrix M̂ðxÞ. This matrix models
hydrodynamic interactions with the Stokes drag (diagonal
elements) and the Oseen tensor (off diagonal elements).
The inertia of the beads is explicitly taken into account by a
force −m̂ð∂2x=∂t2Þ. The matrix m̂ has m1 and m2 in its
diagonal elements.
This equation is solved using a perturbative scheme [7]

(see also [31], Sec. I. A.). Assuming F=ðkaiÞ ≪ 1 and

ai=L ≪ 1, one obtains the period-averaged swimming
speed

ŪF ¼ 3F2ω4
0

2k2θ̄2
a21a

2
2

ða1 þ a2Þ3L2

×
ωðθ1 − θ2Þh�

ω2
0 − ω2 þ ω2

θ1θ2

�
2 þ

�
ω2
0

θ̄
− ω2

θ1
− ω2

θ2

�
2
i ; ð2Þ

where θi ¼ miω=ð6πηaiÞ ¼ τiω is the ratio of the coasting
time to the external forcing period, θ̄ ¼ ðm1 þm2Þω=
½6πηða1 þ a2Þ� is the swimmer coasting time, and
ω2
0 ¼ kðm1 þm2Þ=ðm1m2Þ. The speed is expressed along

the vector pointing from 1 to 2. The solution for arbitrary
separation (within the limit of the validity of the Oseen
tensor) is provided in [31] (Sec. I. A.). The superscript F in
Eq. (2) refers to a force-based approach [6,7,37] where the
stroke of the beads is known only a posteriori.
Alternatively, one can impose a stroke a priori [24,25]

and calculate the swimming velocity ŪS [2,3]. Now GðxÞ is
removed from Eq. (1). Assuming ai=L ≪ 1 and a stroke
jx⃗2ðtÞ− x⃗1ðtÞj ¼LþdsinðωtÞ of small amplitude d=L ≪ 1
(see [31], Sec. I. B.), one obtains

ŪS ¼ 3d2

2

a21a
2
2

ða1 þ a2Þ3L2

ωðθ1 − θ2Þ
1þ θ̄2

: ð3Þ

Notably, there is a unique mapping between the stroke-
based and force-based approaches (see [31], Sec. I. C.), a
result that is not recovered by comparisons with alternative
calculations [24,25].
In both force-based and stroke-based protocols, the

analytical model described with Eq. (1) predicts a trans-
lation of the device in the direction of the beads with the
smallest coasting time. This result may be sensitive to the
ai=L conditions, as it can be seen in [31] where ŪF is
calculated without approximation beyond the use of the
Oseen tensor.
One can relax the assumptions made on the hydro-

dynamic flows and study the asymmetric dumbbell with
lattice Boltzmann (LB) simulations [Fig. 1(b)] [27,38,39].
This algorithm solves a discrete version of the Boltzmann
equation and recovers solutions of the Navier-Stokes
equations in the limit of low Mach and low Knudsen
numbers. Additionally, LB simulations are not limited in
the Reynolds number and account for all inertial effects
in the dynamics of the fluid. For the bead dynamics, a
leapfrog algorithm is used to solve Newton’s equation of
motion. The beads are discretized on the fluid lattice, and
their dynamics is coupled to the fluid by a midgrid bounce-
back boundary condition [27,31,40,41]. As such, both
the fluid and the spring-connected beads are simulated
without any dynamical assumptions (see [31], Sec. II. A.).
Therefore, a favorable comparison with the theoretical
model would validate the assumption of separating the

(a)

(b)

(c)

FIG. 1. Asymmetric swimming dumbbell. (a) The model
assumes two spheres of density ρs with radii a1 and a2 at a
distance L connected by a linear spring with constant k. The
device is submerged in a fluid of viscosity η and driven by
sinusoidal forces of the same amplitude F and frequency ω acting
in opposite directions. (b) An equivalent system is addressed by
lattice Boltzmann simulations (a1 ¼ 8, a2 ¼ 5, η ¼ 1=6,
k ¼ 1=50, L ¼ 28, ρf ¼ 1, and ρs ¼ 8, all expressed in lattice
units or l.u.). The simulation box is discretized by 400 × 160 ×
160 lattice nodes. The background shows the flow field averaged
over one cycle of the external sinusoidal forcing (F ¼ 0.1,
ω ¼ 1.57 × 10−3). (c) A magnetocapillary dumbbell made of
two ferromagnetic beads (magnetic moments μ⃗i, diameter
2ai ∈ ð397; 500; 793Þ μm, and density 7830 kg=m3) pinned at
the water-air interface. The two beads’ separation L is about
1400 μm and set by the balance of forces originating from
capillary attraction and magnetic dipole repulsion. The device is
driven by an external magnetic field B⃗ðtÞ ¼ Bze⃗zþ
½B0 þ b sin ðωtÞ�e⃗x, which induces small oscillations of the
beads. Snapshots are from the beginning of the cycle and halfway
through.
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fluid and beads’ inertia and neglecting the former. For
further comparison, we choose the numerical parameters to
recover the expected Reynolds numbers of the beads and
the fluid. We first confirm that there is no net flow
responsible for the swimmer’s displacement and that a
symmetric dumbbell does not swim. Finally, we show that a
reciprocal deformation of an asymmetric pair results in a
translational motion of the device in the direction of the
small bead, as predicted by the theory.
Finally, we perform experiments using the magneto-

capillary swimmers (see [31], Sec. II. B.) established
previously [28–30,42] [Fig. 1(c)]. Those experiments are
taking place in the underdamped limit [26], while the flows
generated are time-reversible and therefore in the Stokesian
regime [43]. In this limit, this assembly behaves as a
Golestanian swimmer [3,28], a result that stems from the
fact that the equation of motion [Eq. (1)] can capture the
swimmer dynamics at the zeroth order (i.e., as if placed in
the bulk), despite the presence of the interface [44,45], up
to a scaling factor in the Stokes drag [26]. As a conse-
quence, magnetocapillary dumbbells are perfect candidates
for investigating the swimmer-inertia-driven dynamics.
In short, paramagnetic beads with a radius of 397, 500 or

793 μm are deposited on an air-water interface. Thanks to
surface tension and the wetting line being pinned at the
beads’ surface, the beads are restricted to moving along the
fluid interface, implying that gravity can be neglected
in the dynamics. When placed in a magnetic field Bz
perpendicular to the interface, their capillary attraction is
balanced by magnetic dipole repulsion [29]. Imposing a

small oscillating field ½B0 þ b sin ðωtÞ� in the direction
parallel to the interface induces oscillations in the relative
distance between the beads. The homogeneity of Bz and the
flatness of the interface away from the beads ensure force-
free conditions at all times. Measures are also taken to
ensure that propulsion arises solely because of hydro-
dynamic interactions and not because of parasite effects,
as described in [31]. Consequently, symmetric dumbbells
with two identical beads show no self-propulsion.
However, a linear and common displacement of the pair
of beads is observed for two beads of different sizes. The
swimmer moves toward the small bead, as shown in
Fig. 2(a) (see also [31], SM Movie 1), in agreement with
simulations and theoretical predictions. The swimmer is
typically slow, reaching speeds up to 15 μm=s, i.e.,
4 × 10−3L=T body-length L per period T, which gives a
flow dominated by viscous drag instead of inertia, as
quantified with Ref ∼ 10−2. Similar speeds and Reynolds
numbers were obtained in previous experiments involving
the linear 3-bead swimmer [28].
In order to understand the role of the swimmer inertia,

we analyze the frequency response of the swimming speed
of the dumbbell [Figs. 2(b) and 2(c)] using all three
approaches, whereby the parameters of the simulations
are adjusted to recover the experimental swimmer geom-
etry. In experiments, the investigated frequency range
corresponds approximately to Res ∼ 1.5 up to Res ∼ 15,
with the radius of the small bead used as the characteristic
length [Fig. 2(b)]. This is matched in simulations where Res

(b)(a) (c) (d)

FIG. 2. Swimming dynamics of an asymmetric dumbbell—comparison of LB simulations and experiments to the analytic model.
(a) Sinusoidal trajectory of the beads (500 and 793 μm) subject to the driving Bz ¼ 5.6 mT, B0 ¼ 0.7 mT, b ¼ 0.35 mT, and
ω ¼ 12.57 Hz. Vertical lines are guides to the eye. (b) Average swimming speed of the asymmetric dumbbell as a function of the
magnetic field frequency ω. Amplitudes of the field are as in (a). Error bars account for the variance (�σ) between five independent
experiments. Theory using Eq. (3) is shown in black for the 500–793 μm beads’ combination, with the error bars propagated from
experimental uncertainty. (c) Average swimming speed of the asymmetric dumbbell as a function of the frequency from LB simulations
(symbols) and the analytic model based on Eq. (SM-13) in the Supplemental Material (SM) [31] (curves) for different values of the
driving force F (no fitting). Parameters are the same as in Fig. 1 except that k ¼ 1=200. (d) Average swimming speed of the dumbbell
when increasing the radii asymmetry between fore and aft. The points are obtained using LB simulations for ω ¼ 1.26 × 10−3 l:u: and
k ¼ 1=200 l:u. The value of a2 is allowed to change, while a1 is fixed to 3 l.u.. The green line is obtained based on Eq. (SM-13) using
the parameters of the simulation. For the curves accounting for Eqs. (4) and (5), the amplitudes of oscillations have been extracted from
the simulated trajectories.
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ranges from 0.38 to 7.54 for the frequencies considered
[Fig. 2(c)], while Ref remains small at Ref < 2 × 10−3.
For low frequencies corresponding to Res ≪ 1, with

Ref ≪ 1, the asymmetric swimmer obeys the usually
encountered Stokesian scallop theorem for microswimmers
[1]. Consequently, the dumbbell swims inefficiently. A
vanishing swimming speed is also observed at high
frequencies in all approaches as the amplitude of oscillation
decreases. The intermediate frequencies are characterized
by a broad peak in the dumbbell speed. Following the
analytic model, this maximum should be associated with
the mechanical resonance of the dumbbell. Specifically,
Eq. (2) possesses an optimal swimming frequency close to
ω0, a signature of the influence of the swimmer inertia. This
maximum is thus by nature different from the optimum
frequency occurring for purely Stokesian dynamics [6,37].
In experiments, the maximum appears at a frequency of
around 15 s−1, which corresponds to the characteristic
mechanical resonance identified previously [26,28]. In
simulations, it occurs around Res ¼ 1.5, which corresponds
well to ω0 ∼ 1.22 × 10−3 l:u.
Finally, we compare the analytic model directly to the

experiments [Fig. 2(b)] and simulations [Fig. 2(c)]. Starting
with the simulations, rather than using Eq. (2), we use
Eq. (SM 13) (no restriction on ai=L) due to the proximity
of the beads in the simulations. With no fitting parameters,
the agreement is excellent, with the error not exceeding
10%. The strongest deviations are found around the peak
velocity, where the nonzero fluid inertia may play a small
role [18,20,21]. Furthermore, from reading out the stroke
amplitude obtained in experiments, the measured velocities
can be compared to the model using Eq. (3) [see Fig. 2(b)].
Once again, a very good agreement is obtained with some
differences in speed amplitudes at higher frequencies. This
deviation could be attributed to the presence of the interface
and the nonlinearity of the magnetocapillary potential,
which are not captured by the model.
We also analyze the evolution of the swimming speed as

a function of the asymmetry ratio between the size of the
spheres, namely a2=a1 in Fig. 2(d). This evaluation allows
us to compare our results to a previously developed stroke-
based approach reported in [24]. Relying on the reciprocal
theorem, the authors [24] calculate the velocity of a
swimmer with beads of identical densities and also for a
vanishing Res. This leads, in our notation, to the following
swimming speed:

Ū⋆ ¼ ρbω
2d2

6ηL2

a1a2ða21 − a22Þð3a1a2 − a21 − a22Þ
ða1 þ a2Þ3

: ð4Þ

This result is different from our own stroke-based theory,
which is obtained by resolution of Eq. (1). If cast in the
same limit, Eq. (3) reads

ŪS
0 ¼ lim

Res→0
ŪS ¼ ρbω

2d2

3ηL2

a21a
2
2ða21 − a22Þ

ða1 þ a2Þ3
; ð5Þ

¼ Ū⋆ 2a1a2
ð3a1a2 − a21 − a22Þ

: ð6Þ

Both models are compared to the LB simulations. At the
same level of theory, clearly both models significantly
deviate from the LB simulations. Indeed, Eq. (5) system-
atically overestimates the negative swimming velocity but
leads to a good approximation at low a2=a1, where the
inertia is small and the low Res approximation is valid.
However, Eq. (4) demonstrates a reversal in the swimming
direction at a2=a1 ¼ ð3þ ffiffiffi

5
p Þ=2 that is not seen in the LB

simulations or in our approach. Furthermore, if we compare
the LB simulations with the force-based approach (for
which mapping onto the stroke calculations was demon-
strated already), we can apply our model without any fitting
parameter, in which case the LB results are recovered
nicely [Fig. 2(d)]. Notably, our swimmer dynamics is
comparable to that of a neutrally buoyant deforming
dumbbell at low Ref [20,21], where, indeed, self-propul-
sion in the direction of the small bead was also found.
Those comparisons not only vindicate the theoretical

model but also testify to the existence of a mesoscopic
swimming regime where propulsion is driven by the inertia
of the device while keeping a low Ref. Self-propulsion of
mesoswimmers relies on Res > 1, which points to the
significant role of the inertia of the beads. However, as
demonstrated by the behavior of the symmetric design,
inertia alone is not able to propel with a reciprocal
deformation. Indeed, swimming necessitates the asymme-
try of the design. Under the application of forces, beads
accelerate and decelerate at a different rate as soon as θi ≠ 0
[24]. A direct consequence of this asymmetric response is
to induce a phase shift (Fig. 3) in the oscillation of the beads
measured within the laboratory frame (see [31], Sec. I. C.).
This is captured by an ellipse in the configuration space of
the dumbbell spanned by the coordinates x⃗1, and x⃗2 of the
two oscillating beads. As a consequence of this phase
difference, the velocity of the beads with respect to the fluid
is not time-reversible even though the swimmer deforms in
a reciprocal fashion. It is worth noticing that this phase shift
is constant with respect to time as soon as the transient
dynamics of the beads is over. This has been verified in the

(a) (b) (c)

FIG. 3. Configuration space of the dumbbell. The ellipse results
from the phase shift in the oscillations of the beads x1ðtÞ and x2ðtÞ
around the swimmer geometric center. (a) LB simulations,
(b) corresponding analytics (ω ¼ 1.57 × 10−3), and (c) experi-
ments (ω ¼ 15.7 s−1, 500–793 μm)
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numerics and in the experiments and also validated by the
theory [31]. In short, the two configurational degrees of
freedom required by the scallop theorem are located in the
individual oscillations of the beads, which are naturally out
of phase thanks to the difference of the beads’ coast-
ing time.
The phase shift has two consequences. First, it implies

that despite having a force-free swimmer, the instantaneous
flow field generated by the swimmer can have a monopolar
component (see [31], Sec. I. D.). Nevertheless, the time-
averaged flow is dipolar [Fig. 1(b)], and the swimmer can
be described as a puller in the investigated range of
parameters. Notably, similar flow fields are also generated
in neutrally buoyant deforming dumbbells [20,21], show-
ing that the small inertia of the fluid does not qualitatively
change the swimmer’s behavior.
Second, knowing the phase shift in the individual

oscillations also allows us to cast the expression of the
swimming speed into

Ū ∝ A1A2 sinΔϕ; ð7Þ
where Ai are the amplitudes of oscillation of the beads (see
[31], Secs. I. B.–I. C.). This result states that the dumbbell
naturally fulfills the scallop theorem by relying on the
beads’ nonzero coasting time and its asymmetry.
In conclusion, this Letter rephrases the scallop theorem

for mesoswimmers and hence establishes the physical
framework for self-propulsion in the vanishing Ref yet
finite Res regime. Contrary to previous works, we show
that the theorem can be recast on a mesoscopic scale thanks
to the nonreciprocal flow field generated by the two spheres
that originates from the competing timescales of the
dynamics, namely the coasting times and external forcing
period. We are able to present this result by successfully
bringing together theoretical modeling, numerical simula-
tions, and experiments. The analysis performed here thus
shows that the transition from microswimmers to meso-
swimmers may occur through a delicate balance of viscous
damping and inertial relaxation. At higher Reynolds
numbers, naturally, the inertia of the fluid will couple to
the coasting of the swimmer and dominate the dynamics
[20,21]. The analysis provided here may help explain the
emergence of this complex interplay.
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